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I. INTRODUCTION

In 1953, J. D. Nicolaides introduced the concept of spin-yaw resonance of
missiles having slight configurational asymmetries.1  In this paper, he showed
the possibility of large trim angles when the spin rate happened to be near
the natural pitch frequency of the missile. Later authors considered various
aspects of the pitching motion of the missile when its spin was near reso-
nance. 2"5  The combination of symmetric nonlinear aerodynamic moments and a
trim mom.ent produced by a configuration asymmetry has been studied extensively
for non-resonant spin and the possible existence of subharmonic response, as
well as a variety of limit motions, has been demonstrated. 6- 9

The very important question of the existence of a spin moment that forces
the spin to its resonance value was first answered by Nicolaides 2 when he
introduced an induced roll moment which was a function of the total angle of
attack and the roll angle between a particular fin and the plane of the total
aigle of attack. (This "induced" roll moment is induced by the non-rotation-
ally symmetric flow field over a finned missile at angle of attack.) Glover 1 0

considered the effect on spin of mass and aerodynamic asymmetries. He showed
that a laterally offset c.m. location introduces an induced roll moment which
is a function of two angles: (a) the total angle of attack and (b) the angle
between the angle-of-attack plane and the plane containing the c.m. and axis
of symmetry. This analysis has been extended to sounding rockets and re-entry
vehicles. 11- 12

In this report we will consider the variety of spin lock-ins that can
occur for a slightly asymmetric missile whose rolling motion is controlled by
the usual linear roll moments and a generalized induced roll moment. Three
different types of lock-in are shown and conditions on the induced roll moment
are given. Finally, the effect of an induced pitch and yaw moment is briefly
considered.

II. SLIGHTLY ASYMMETRIC MISSILE

A missile whose linear aerodynamic forces and moments have the same sym-
metry as those for a body of revolution will be called basically symmetric. If
this basic synetry is disturbed so that its normal force and static moment
are not zero at zero angles of attack and sideslip, the missile is a "slightly
asymmetric" missile.* This disturbance can be caused by small cant angles of
fin surfaces and induces a trim pitch angle that rotates with the missile and
is a function of the spin rate. When the spin rate is near the fast preces-
sion rate, a maximum value of the trim angle occurs and this event is called
spin-pitch resonance.

Aeroballistic axes pitch and yaw with the missile but have zero roll
rate. The linear aerodynamic force and moment for a slightly asymmetric
missile can be written in these coordinates as:

*A slightly asymmetric missile has equal zero-spin pitch and yaw frequencies.

If these frequencies differ slightly, the missile is called an "almost
symmetric" missile. 13
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C ' + i C -Cjj CNo0 e (2.1)

C- + i M - i C e (2.2)
n C F' C',, 0, 1 C41J i (Mqt C%) M

where

: +i

.d
() =

t

S (V/Z) dt

= roll angle

and where C , CM are non-negative.

0C

This force and moment can be inserted in the usual differential equations C
for the pitching and yawing motion:

14

C" + (H - iot') C' - (M + ip o'T) = - MA e (2.3)
A.

where

T= .. CL~ C' - k t 2(C Mq H)J
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T2~ [CL +ka- -2 CM]

MA S3 [C Mo 0 ikt2 (1a 0)'C M e
21 oM 1k

-2
'kt resonance, 0' is of order 10 and so the CNo term in MA can and will be

neglected. For zero spin, the steady-state motion can be described by a
constant trim angle:

= 6TO e (2.4)

where

6TO= MA/M = . CMo/CM.

The independent variable in Eq. (2.3) is dimensionless time, s. For
spin-yaw resonance, it is convenient to use a second dimensionless time, T,
which is defined to be

= [-M/(1-a))l/ 2 s. (2.5)

Eq. (2.3) now becomes

•0 - i +¢M )
-T (1-a) e (2.6)

where

H H H-(1-o)/M] I

= T [-(1-o)/M3 1/ 2

For constant spin, we assume the steady-state response to the aerodynamic trim
has the form

- e (2.7)
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where

= =T is constant. t

A direct substitution of Eq. (2.7) in Eq. (2.6) yields

i
T e = 6T e (2.8)

where*

h (Ih: (1- o)-1 [H-of]

The simple form of Eq. (2.8) is due to our use of x as the independent

variable. According to Eq. (2.8), resonance occurs at 1$: = 1 and the

resonance value of the trim angle magnitude is 6TR = 6 The magnitude=R TO* h antd

of the trim angle grows from 6TO to a maximum which is approximately 6TR and

then decays to zero. The phase angle varies from zero at zero spin to -900 at
resonance and then to -180 for infinite spin.

III. ROLL EQUATION

The roll moment for a slightly asymmetric missile usually has two compo-
nents 1 5 - a constant spin-producing moment caused by differential cant of the
fin surfaces, 6, and a spin-damping moment proportional to the spin rate. If

the missile is not a body of revolution, a roll moment can be induced by an
angle of attack and varies with e, the angular orientation of the angle-of-
attack plane with respect to the missile.

In the usual missile-fixed axes, the complex angle of attack has the form

+= + ia = 6 ei O (3.1)

Since the aeroballistic axes differ from these axes by the roll angle *,

F = 64el= e i  (3.2)

+. 0 : + (3.3)

*Dynamic stability near resonance requireslk that h < 0.

45



The complete roll moment including the angle-of-attack-induced component can
be written as

C C 6 + Cp *' + % (6,6) (3.4)

6 p0

The Y-axis in the missile-fixed coordinates is usually taken to be in a
plane of mirror symmetry of the basically symmetric missile. If this is the
case, the induced roll moment coefficient is on odd function1 6 of e.

, = -c (-e,6) (3.)

It therefore can be expanded as a Fouricr sine series in 0. A rotationally !-1
symmetric missile with n similar fins has a symmetry angle of 2r/n and thus
the induced roll moment should have this fundamental wavelength.

4

C = ak sin nkO (3.6)

where

a= ak(6) and ak(O) 0 0.

In terms of the complex digle of attack

enk Cnk
sin nkO = !! (3.7)

2i6
n k

If we make the mathematically attractive assumption1 6 that the roll moment is
an analytic function of a and , the ak(6) function can be expressed as a '4
special power series in 6.

nk
m

a k bk 6 (3.8)

k 0

The first term in this double series expression for the induced roll
moment coefficient is b'

.
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6njn n).=

bo10 S sin no = ((b 1o)/2i) 1P - ). (3.9)

For all the calculations of this report, we will approximate the induced roll
moment coefficient by this term. As a further convenience, we will select the
orientation of the Y-axis in the plane of mirror symmetry so that b1o is posi-
tive. The resulting roll equation for this roll moment is:1"

"+ Kp ' s - i K ( (n n)] =0 (3.10)

where Kp- pS 3 [ C + ka2 CO1

= K 
s K p

2 6

2 -1e (b10/2) zp J

For most finned missiles, Kp is positive. In the absence of an induced roll

moment, Eq. (3.10) predicts a stable steady-state spin of *s" This design
steady-state spin is set by the designer through the fin differential -
deflection angle, 6f.

The independent variable in Eq. (3.10) can be easily changed from s to
and can be scaled by its value at resonance.

K [$ - - i G (; n -n)] = 0P ' _

where K = K [-(I-")/M] I/ -

G = Ke [-(1-o)/M]1/2 6n

.14R="4
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The differential equation for the scaled complex angle of attack, ;, can be
obtained from Eqs. (2.6-2.7)

2p
+ i(2-o)$] E + a)[1-.2 + i;h + i = (I-on he (3.12)

Lock-in occurs when Eqs. (3.11-3.12) have a constant steady-state equilibrium
solution

- G, (,r -n) (3.13)

(3.14)
1-$' + ie he e

e has a maximum amplitude of unity. Thus, if G is small compared to

, the induced roll moment has very little effect on equilibrium spin, and

the usual steady-state spin occurs. If, however, this is not the case, t,,e

induced roll moment can have a large contribution for ;e ~± and the roll

rate can be locked in at resonant spin ($2 = 1). At resonance, e
is M- (7/2). As we shall see, lock-in can occur both for the normal case of

resonant spin in the same sense as the expected steady-state spin and for the
reverse case of resonant spin with the opposite sense.

IV. LOCK-IN STABILITY

A number of solutions to Eqs. (3.13-3.14) can exist. These may be found
graphically by plotting the curve

=t 4e = i G (f - n) (4.1)

and finding its intersection with the line*

= f e = 'e - 's (4.2)

*A VAX 11/780 program has been written by J.W. Bradley, Launch and Flight
Division, U.S. Arny Ballistic Research Laboratory, Aberdeen Proving Ground,
Maryland, to find all such intersections.
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Some of these equilibrium points, however, may be unstable and have no
engineering significance.

We will assume a small perturbation of an equilibrium solution.

0" + T1i (4.3)

4e + r +  ( n3  (4.4)

where

Substitution of Eqs. (4.3-4.4) in Eqs. (3.11-3.12) yields a fifth-order
differential systen in the nj'S. Next, we assume a coupled exponential

solution for these perturbation functions:

= e- (4")

where the njO's are constants.

Direct substitution gives three equations for the three njo'S.

3

ajk njo = O; k = 1,2,3 (4.6)

where the ajk's are given in TABLE 1.

The determinant of the system (4.6) must be zero for a non-trivial
solution. This condition reduces to a fifth-order polynomial equation in x. c
J.W. Bradley's VAX program inspects the coefficients of this polynomial and
uses the Routh-Hurwitz criterion to determine the presence of negative real
parts in any of the five roots. If all of the roots have negative real parts,
the equilibrim is stable.

It should be noted that the location of equilibriun points is determined
by the parameters n, ;s3 G, ¢M, and h. The stability of these equilibrium

points requires values of H, Kp, and a in addition to these basic five -
parameters. i

-4
. . . . °N



TABLE 1. Stability Matrix Elements, ajk.

al -A + Kp

a21 -in p e - )
p e n

n31 K G (cn-1 + e1

a21 = -R { e [(2$e - ih) (I-a) - ix]}

2.

_ X2  + +AX + (1-a) (14- )a22 e

823 =-e [(2-a) X + (1-c) hJ

a31 =-I {e [(2;e - ih) (1-c) - i X}

a32 e [(2-X) + (1-a) h]

a 3  2 + H + (1-a) (I-$)

a33 e

V. CENTER OF MASS OFFSET

When n is three or greater, a missile has trigonal or greater rotational
symmetry and its linear force and moment coefficients have the same symmetry
as a body of revolution. 16  Digonal rotational symmetry (n - 2) would occur,
for example, when a four-fin missile has pairs of fins with unequal areas.
The theory for almost symmetric missiles would apply to the motion of digonal
missiles. Although n = 1 really implies no rotational symmetry, symmetric
missiles can have induced roll moments with this value of n if their centers
of mass have a radial offset.

9



We will assine the center of mass to be radially offset by a distance of

re in the plane U U. The normal force can then exert a roll moment with a

lever arm of Lrc sin e. A

Mx = FN Xrc sin e

(5.1)

4

If Eq. (5.1) is compared with Eqs. (3.4 and 3.9), we see that the radially
offset center of mass produces an induced roll moment with n = 1, b0 =

The offset cnter of mass can also produce a trim pitch moment since the bm

drag force now has the linear arm

(Cf+ i C) 0 : -i r c CD e" (5.2)

O, CM  = rc CD  (5.3)

VI. INDUCED PITCH MOMENT

If an induced roll moment dependent on e is present, the transverse
moment expansion can also have a term dependent on e.

(C-+ i C;-) -- -i CM ( e,) (e (6.1)

For an n-gonal rotationall, syfmetric missile, the simplest expression for
Cm  is:16

CM =a 0 6n 2 e - no i  (6.2)

For n i, CM is a 0 and the induced pitch moment is the trim pitch moment

of Eq. (5.2). For n > 1, Eq. (3.12) becomes a nonlinear differential equation,

101!K



+ [H + i (2-a) ;] + (I-o} +i-s2 + m + i $ h + i

(6.3)

= (i-a) Ih em

/

where me  m6 (6, I 6TR) CM /CM ,

The steady-state trim equation for specified spin becomes a nonlinear equation
in eand 0e

Jhj e'
e =  (6.4)

1 - ;2 +m + I h

For m small compared with unity, it has very little effect on the real

part of the denominator but can have a significant effect on the imaoinary
part. Thus, the resonance value of i eI can exceed unity. A much more impor-

tant effect of me can be to make all solutions for ce unstable. If that is

the case, ; can vary through very large values. This possibility has been
denoted as catastrophic yaw by Nicolaides. 2

VII. DISCUSSION

According to Eqs. (3.13-3.14), the induced roll moment has maximum ampli-
tudes near resonance. For even values of n, and n M = ±4/2, ±34/2,.., If1

has an absolute maximum of 21GI at ;e = i-1. For odd values of n, the same

absolute maximum occurs at n4 = ±0, ±r,.... Thus, resonant lock-in is only
possible for I' I < 2G. In actuality, for specific n, occurrence of lock-in

5
depends on the specific values of (h, $s, G, 4M) while the stability of the

lock-in depends on (H, K o). Throughout this section, h = H = Kp = 0.1

and we will only consider different values of ;s1 G, %•M

In order to consider lock-in in more detail, we will limit the remainder

of this discussion to the case of n = 1. For this case of an offset center of

mass and 4 , f1 has a minimum of -2G at e , and a maximum of 2G at

e= . A simple analysis further shows that for M n/2, f, varies from a

11 C
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minimum near -G ate = -1 - h to a maximum near G at *e = -1 + h and simi-
larly varies from a maximum near G at $= - h to a minimum near -G at e

e =e oamnmmna Ga
I + h. Finally, f 1 (6) = -f 1 (0+7). In Figures 1 and 2, f (ie is plotted
for M = r/2, 3a/2, respectively, for G = 5. The dotted lines in these

figures are f2(;e) for ;s = 3. The parameters for these figures are the first

two entries in TABLE 2.

TABLE 2. Illustrated Examples of Various Lock-In Cases.

Case ;s G OM Stable $e'S Type

1. 3.0 5.0 900 1.01, 2.68 SN
2. 3.0 5.0 2700 -.98, 3.11 SR

3. 0.5 1.0 180' -1.03, .52, 1.08 SNR

4. 0.5 0.5 900 .69, .97 SN

5. 0.5 2.0 2700 -.98, .10 SR
6. 0.5 1.0 900 .99 N

7. 0.5 5.0 2700 -. 99 R

In both figures there are five equilibrium points. In Figure 1, the
slightly modified steady-state spin, = 2.68, and the normal resonance, ;e =

1.01, are the only stable equilibrium points. This is the normal lock-in
model considered by engineers. If spin starts near zero, designers hope it
accelerates through resonance fast enough to avoid capture and reaches steady-
state spin with only a slight stimulus to its pitching motion caused by
passage thrcugh resonance.

In Figure 2, the twu stable equilibrium points are the steady-state spin
of 3.11 and the reverse resonance spin of -. 98. This resonant lock-in spin in
the opposite sense to the design spin is an unexpected result. We will denote
normal resonant lock-in spin by N, steady-state spin by S, and reverse
resonant lock-in spin by R. Then the two stable equilibrium spins of Figure 1
could be identified by SN and the two stable equilibrium spins of Figure 2 by
SR.

If we now consider ;, less than unity, even more remarkable possibilities

appear. Five examples are given in TABLE 2. Case 3 in TABLE 2 is particu-
larly interesting; the corresponding equilibrimn spin determination is shown

12



in Figure 3. Si nce 4 180' fl has oniy one maximum and one minimum. There

are, however, three stable equilibrium spins and this case is denoted by
SNR. The next two entries in the Table are examples of types SN and SR for

1$S1 < I and are quite similar to the first two entries. The final two
entries represent new types, N and R, for which no stable steady-state spin
exists. Thus the induced roll moment can completely overpower the design
steady-state spin. (Cases 4 to 7 are shown in Figures 7 - 10.)

For the cases of two or three stable equilibrium spins, the equilibrium
that occurs in flight is determined by initial conditions. Equations (3.11-
3.12) form a fifth-order differential system. The necessary five initial con-
ditions are the initial spin rate ;,, the initial complex angle ;0' and the
initial complex angular velocity. For simplicity, we will let $o = ;o = 0 and

consider only the magnitude and orientation of 4o"

o =1 I e *  (7.1)

For case 1, which was a type SN with ;s = 3,1 01 was set at .1 and e*

was varied. As can be seen from Figure 4, steady-state spin occurs for e* =  1

180* and normal lock-in spin for 6* = 0. For case 2, which was type SR with

;s = 3, I40I was set at 1, steady-state spin occurred for 0* = 90" and reverse
lock-in spin for 6* = 2700 (Fig. 5). Finally, for case 3 which was type SNR
with ; = .5, I was 3, steady-state spin occurred for 0* = 0, normal lock-

in spin for 6* = 90° and reverse lock-in spin for 0* = 2700 (Figq. 6).
Therefore the determination of which equilibrium spin occurs in flight can be
made by the orientation of the initial angular velocity.

VIII. SUMMARY

1. A roll moment can be induced by the missile's pitching and yawing
motion. Simple expressions for this roll moment have been given for aero-
dynamically symmetric missiles and for missiles with mass asymmetries.

2. These induced roll moments can cause the rolling motion of slightly
asymmetric missiles to have a variety of steady-state values. Examples of
normal resonant lock-in spins in the direction of spin and reverse resonant
lock-in spin in the opposite direction are shown.

3. For multiple stable equilibrium spins, the orientation of the initial
pitch angular velocity can determine which one occurs in a given flight.

13
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LIST OF SYMBOLS

CD Drag force/(1/2)pV 2S, the drag force coefficient

CL Mx/(1/2)pV2S where Mx is the axial aerodynamic force

CLp Spin-damping moment coefficient [Eq. (3.4)]

C Spin-producing moment coefficient due to canted fins
[Eq. (3.4)]

C Spin moment coefficient induced by the z 'g'ie of attack[Eq. (3.4)]

CL CN  - CD9 the lift force coefficient

C(-, C- ( )i(/2)pV2SX where My, M are the transverse

aerodynamic moments in the aeroballistic system

CM Magnus moment coefficient [Eq. (2.2)]

CM + CM. Damping moment coefficient sun [Eq. (2.2)]
o a -

CM 0 Asymmetry moment coefficient [Eq. (2.2)]

CM Static moment coefficient [Eq. (2.2)]

CM Induced pitch moment coefficient [Eq. (6.1)]

CN Asymmetry force coefficient [Eq. (2.1)]

CN  Normal force coefficient [Eq. (2.1)]
OL

CY, Cz (Fy, Fj)/(1/2)pV2S where Fy, Fj are the transverse aerodynamic
forces in the aeroballistic system

nI n

fl iG( -

f2 e" s

FN  Normal force due to radially offset center of mass

G n T
h (-oT)/( cx)(
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LIST OF SYMBOLS (continued)

2m L D t2 (CMq + CM

Ix Axial moment of inertia

It Transverse moment of inertia

a xki Ixt/m£X2

Kp p p + k2 C], [Eq. (3.10)]
m 2 I 

K Cblo/CM  C  +I [Eq. (3.0)]

2 It  
I a D

2 
t

M Roll moment due to radially offet center of mass [Eq. (5.1)]

Symmetry number; he symmetry angle is 2,/n radians
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LIST OF SYMBOLS (continued)

N Type designator: normal resonant lock-in

r Radial offset of the center of mass (calibers)

R Type designator: reverse resonant lock-in

S (V/.) dt

S (1) Reference area r12/4
(2) Type designator: steady-state spin

t Time

T -ESkICL + k a2 c]2m a Pa

V Magnitude of the velocity

Angles of attack and sideslip in the missile-fixed system

Angles of attack and sideslip in the aeroballistic system

6 Absolute value of and

6 f Differential fin cant angle

6t  Absolute value of T

6TR 6T3/1hi

6To MA/M = -CMo/CM

J TR

Zo Complex angular velocity at t = 0.

6 Orientation angle of [Eq. (3.1)]

Orientation angle of { [Eq. (3.2)]
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LIST OF SYMBOLS (continued)

0* Orientation angle of Z -

Constant %/jj [Eq. (4.5)]

0 + ic = 6e e, complex angle of attack in the missile-fixed
system

4 + ia = 6ei , complex angle of attack in the aeroballistic

sy stem

41T Constant trim angle value of [Eq. (2.8)]

p Air density

Ix/It

t [-M/(I M/1 - a s/ &

Roll angle

Asymmetry moment orientation angle [Eq. (2.2)]

Asymmetry force orientation angle [Eq. (2.1)]

s K /Kp, steady-state spin (rad/cal)

STan- 1 [ "- h/(1 - $2)] [Eq. (2.8)]

Superscri pts:

(-) Complex conjugate

1) [-(I - G)/M 11/ 2

1") d( )/dT -

( )' d( )/ds

Subscripts:

S)e Equilibrium value

)s Steady-state value
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